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A B S T R A C T   

Recent accounts of perception and cognition propose that the brain represents information probabilistically. 
While this assumption is common, empirical support for such probabilistic representations in perception has 
recently been criticized. Here, we evaluate these criticisms and present an account based on a recently developed 
psychophysical methodology, Feature Distribution Learning (FDL), which provides promising evidence for 
probabilistic representations by avoiding these criticisms. The method uses priming and role-reversal effects in 
visual search. Observers’ search times reveal the structure of perceptual representations, in which the probability 
distribution of distractor features is encoded. 

We explain how FDL results provide evidence for a stronger notion of representation that relies on structural 
correspondence between stimulus uncertainty and perceptual representations, rather than a mere co-variation 
between the two. Moreover, such an account allows us to demonstrate what kind of empirical evidence is 
needed to support probabilistic representations as posited in current probabilistic Bayesian theories of 
perception.   

1. Introduction 

Within cognitive science the mind is considered to be an information 
processing system that makes inferences about the external states of the 
world using information from the senses or memory. However, this in-
formation is generally noisy and incomplete. One of the main challenges 
for cognition is therefore to make reliable inferences about the world in 
the face of uncertainty. This entails the idea that our brains perform 
probabilistic calculations involving uncertainty. With advances in 
computer science and mathematical modeling, probabilistic approaches 
to cognition involving Bayesian statistics have become a unifying 
framework for studying human cognition (for reviews see: Chater, 
Tenenbaum, & Yuille, 2006; Griffiths, Chater, Kemp, Perfors, & Ten-
enbaum, 2010). 

These probabilistic models and approaches are particularly 
advanced and successful in the field of visual perception (e.g., Kersten & 
Yuille, 2003; Mamassian, Landy, & Maloney, 2002). A crucial assump-
tion of these Bayesian theories is that the brain represents information 

probabilistically. For example, information is considered to be repre-
sented as a conditional probability density function of a set of hypoth-
eses about a distal stimulus rather than as a single estimate of that 
stimulus. While a large amount of experimental results is consistent with 
probabilistic representations, experiments that directly investigate how 
information is represented by the brain are scarce (Knill & Pouget, 
2004). Carefully designed experiments are needed to elevate this claim 
to more than simply an assumption in the field. 

Recently, empirical support in favour of probabilistic representations 
in visual perception has been strongly criticized (Rahnev, 2017; Block, 
2018; Yeon & Rahnev, 2020, see discussion in Rahnev, Block, Denison, 
& Jehee, 2021). In Section 2, we provide a short review of these recent 
criticisms, which involve the claim that proposed empirical evidence for 
probabilistic representations in the literature can be explained by 
positing non-probabilistic representations. While we agree with such 
criticisms, in Section 3 we present a recently developed psychophysical 
methodology, Feature Distribution Learning (FDL, Chetverikov, Cam-
pana, & Kristjánsson, 2016, 2017a), and argue in Section 4 that the FDL 
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method enables the study of perceptual representations by avoiding the 
methodological criticisms of experimental studies that attempt to pro-
vide empirical evidence for probabilistic representations. We discuss the 
first criterion for providing evidence for probabilistic representations, 
which is to demonstrate that representations that involve probability 
distributions are not imposed on the task by the experimenter, but 
instead generated by the brain to be utilized later. In Section 5, we 
propose a second criterion to provide empirical evidence for probabi-
listic representations. According to our account, experimental results 
that demonstrate the utilization of correlations between the internal 
states of the visual system and stimulus uncertainty will not suffice as 
evidence for probabilistic representations as they are defined in the 
empirical literature, whereas demonstrating utilization of structural 
correspondence between the two would. Subsequently, we demonstrate 
how the results obtained with the FDL method constitute a prime 
example of such evidence. In Section 6, we present our overall conclu-
sions and discuss unanswered questions that warrant further 
investigation. 

Our main argument here is mainly built on Block (2018) and Rah-
nev’s (2017) criticisms of the notion of probabilistic representations that 
incorporate probability distributions over possible estimates of a visual 
feature, which we take to be the notion posited in perceptual sciences. 
One can argue against Block’s criticism by appealing to different notions 
of representation that incorporate probabilities in different ways (e.g., 
Gross, 2020; Shea, 2020; Shea & Frith, 2019). However, here, we mostly 
agree with Block’s or Rahnev’s criticisms; and we use them as stepping- 
stones to elaborate on what satisfactory empirical evidence for proba-
bilistic representations should look like, by presenting a particular 
psychophysical method (and the results obtained from this method) as a 
prime example of this. 

2. Criticisms of experiments supporting probabilistic 
representations 

Recent criticisms of empirical evidence for probabilistic representa-
tions can be grouped into two categories. The first is directed at the 
design of perceptual studies providing evidence for probabilistic repre-
sentations, whereas the second category focuses on the interpretation of 
the results obtained from such studies. 

2.1. Design of the experiments 

Block (2018) argues that Bayesian theories of visual perception do 
not necessitate positing probabilistic representations. While he focuses 
on the connection between visual phenomenology and probabilistic 
representations, he also critically reviews influential experiments that 
argue for probabilistic representations. The common premise of those 
experiments is that while our visual system represents information in 
terms of probability distributions, our discrete responses or perceptual 
decisions are samples1 taken from these distributions. Block argues that 
while these results provide an account of perceptual decisions, they do 
not say anything about perception itself. 

Experiments on perceptual processes generally involve tasks where 
observers are asked to make judgments about the perceptual feature 
under scrutiny. Observers are generally required to focus on a visual 
stimulus (e.g., an object oriented in a specific way, or having a certain 
colour), and then answer a question based on that stimulus (e.g., is the 
object tilted right or left; is there a red target among orange dis-
tractors?). Block argues that while decisions in response to such queries 
can be described probabilistically, in ordinary perception, an object’s 
feature, such as its orientation or colour, would appear, for example, 

vertical or blue to an observer without any task or query. There might be 
competing representations, and the result of this competition can be 
described probabilistically (e.g., observers answered “tilted right” 60% 
of the time), but this does not mean that the competing representations 
are themselves probabilistic. 

Moreover, Block (2018) argues that such perceptual decision tasks 
require observers to impose cognitive categories on perceptual infor-
mation. For example, if you see an animal outside of my house on a 
foggy night, your visual system might assign a high probability that the 
visual object is a four-legged animal. However, if you try to judge 
whether it is a cat or a small dog, then a different probability would be 
assigned to the result of my perceptual inference. In other words, the 
probabilities potentially assigned by the visual system cannot be 
assigned until the category that the perceptual decision is being made 
within is specified. In Bayesian terms, a hypotheses space must be 
specified before a probability distribution of that space can be defined, 
and this space determines the shape of the probability distribution of 
possible hypotheses (i.e., dog, cat, human, etc.) given the scene. In the 
previous example, this conditional probability distribution will differ by 
whether the space of hypotheses is composed of four-legged animals or 
animate objects in general. For perceptual tasks, these categories are 
imposed onto the task in advance by the experimenter. In other words, 
the space of hypotheses is generated for the observers beforehand, but 
this does not occur in the real world. Block therefore claims that the 
results of perceptual studies depend on the cognitive categories that 
researchers impose on the perceptual task. 

Perceptual tasks in such experiments are designed to be challenging 
to obtain more informative results. This allows researchers to examine 
patterns of mistakes that the visual system makes. For example, the vi-
sual items could be presented very briefly, they can be presented in a 
crowded scene (either spatially or temporally) or in the peripheral visual 
field. However, these tasks can be so demanding from the observers’ 
perspective that they can become subjective guessing tasks rather than 
perceptual tasks (Block, 2018). For example, try to discriminate the 
letters used in this word, while fixating on this word. You will probably 
perceive letters in your peripheral visual field, but your decision on the 
word will likely feel like a subjective guess. Moreover, these tasks may 
require very complex cognitive decisions. For example, a perceptual task 
may involve several response choices with different monetary reward 
tied to each response under varying time restrictions. Such experiments 
can force observers to adopt a certain cognitive strategy when per-
forming the task, which, in turn, may mean that the results say more 
about cognitive decisions than perception. Block claims that these issues 
create a gap between studies of perception and what normally happens in 
perception. 

2.2. Interpretation of experimental results 

Empirical evidence for probabilistic representations in perception 
comes from studies indicating that the visual system represents its own 
sensory uncertainty, caused either by stimulus properties and/or by the 
noise in the internal mechanism of the system. This idea can be seen in 
perceptual cue combination studies (Ernst & Banks, 2002; Körding & 
Wolpert, 2006) or studies focusing on Bayesian priors and their effect on 
perceptual decisions (e.g., Weiss, Simoncelli, & Adelson, 2002). How-
ever, Rahnev (2017) argues that no empirical evidence has so far shown 
that uncertainty is represented or used as a full probability distribution 
in perceptual decisions. He proposes alternative representational 
schemes that can account for the experimental findings without neces-
sitating that information about the whole probability distribution is 
represented. For example, viewing a moving bar would create a popu-
lation code in motion-sensitive neurons where each neural structure is 
tuned to a different direction (Fig. 1A). This could be characterized as a 
sensory distribution over possible orientations, where the height of the 
curve represents the level of neural activity. Rahnev argues that this 
information is not available for perceptual decisions. Instead, only the 

1 Rather than being completely random, these samples are mostly considered 
to be outputs of a cost minimization computation given the probability distri-
bution and a cost function applied to it. 
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summary statistics of this distribution (e.g., mean) can be accessed and 
used in perceptual decisions. Moreover, these summary statistical fea-
tures can be represented in different ways. For example, only the hy-
pothesis with the highest activity accompanied by the strength of this 
activity (Fig. 1B, top row), or only the mean and the variance of the 
distribution might be represented (Fig. 1B, bottom row). Experimental 
results assumed to support representations containing probability dis-
tributions can also be explained by these alternative summary statistical 
schemes. 

Rahnev (2017) also proposes possible methodological approaches to 
empirically distinguish whether perceptual representations include full 
distributions or only their summaries. One critical approach highlighted 
by Rahnev (2017) is to use visual stimuli that would produce non- 
Gaussian sensory evidence. When the stimulus variability is Gaussian, 
distinguishing a full representation and a summary representation be-
comes almost impossible. Encoding the summary statistics of a Gaussian 
distribution (e.g., mean and variance) is equivalent to having informa-
tion about the full Gaussian distribution. However, if multi-modal (e.g., 
bimodal) distributions of sensory evidence are used, a summary statis-
tical scheme would only represent a single mode of that distribution, 
whereas full distribution representations would carry information about 
other peaks as well. Therefore, such experiments could provide more 
accurate insights about the format of perceptual representations. 

Block (2018) also claims that the visual system does not represent 
uncertainty in the way that is often assumed. While structures in the 
visual system are sensitive to uncertainty, this does not mean that these 
structures represent this uncertainty. Therefore, experiments that puta-
tively support probabilistic representations can only be used to claim 
that the visual system is sensitive to uncertainty. Such sensitivity to 
uncertainty can give rise to complex adaptive responses, where seem-
ingly “representational” processes are embedded in the physiological 
architecture of the visual system. These processes can be complex for 
researchers to understand (and make them posit probabilistic repre-
sentations to understand the system), but they are not complex from the 
perspective of the system itself. 

While there are differences between the standpoints of Block and 
Rahnev (e.g., whether perception or perceptual decision is chosen as the 
locus of criticism), their views on the perceptual representation of un-
certainty parallel one another. Rahnev argues that visual representa-
tions consist of a single estimate of the stimulus feature, coupled with an 
internal variable (e.g., strength of evidence or variance) that correlates 
with sensory uncertainty, instead of a probabilistic representation of 
that uncertainty. In other words, the sensory uncertainty is not fully 
represented but there are internal states that co-vary with it which make 
these visual processes sensitive to uncertainty. Block reaches a similar 
conclusion (see Section 5 for details), although Rahnev does not make an 
explicit distinction between sensitivity and representation. Overall, they 

both agree that the current empirical evidence indicates that there are 
internal visual states that co-vary with stimulus uncertainty, but this is 
not enough to claim that our visual system uses probabilistic represen-
tations that incorporate probability distributions over possible estimates 
of a visual feature. 

3. The feature distribution learning (FDL) method 

Recently, Chetverikov et al. (2016, 2017a); Chetverikov, Campana, 
and Kristjánsson (2017c) introduced a new method to assess represen-
tations of visual feature distributions. Their results indicate that ob-
servers encode not only the summary statistics of visual feature 
distributions, but also the distributions themselves. 

In classical visual search tasks, observers see a display containing 
several items composed of distractors and a target. Sometimes observers 
are told what feature they should search for (e.g. search for ‘/’ in 
Fig. 2B), while in others, observers are not informed about the features 
of the target in advance, but are told to search for the odd-one-out item 
(e.g. find the oddly oriented line in Fig. 2B, without knowing in advance 
that it is ‘/’). In the former, as soon as there is a match between the 
feature value of the target and an item in the display, the search ends. 
However, this is not the case for odd-one-out search, where observers 
have to visually process all the items. Whether an item is a target de-
pends on whether all the other items can be grouped into a category of 
distractors, to which the target is unlikely to belong. Odd-one-out search 
forces observers to process distractor orientations so that the target 
orientation can be defined. However, this search can become more 
efficient when priming effects occur (Kristjánsson & Driver, 2008; 
Maljkovic & Nakayama, 1994). If observers perform a series of odd-one- 
out searches where the distribution of distractor features is repeated and 
observers encode the features of the target and the distractors, the search 
becomes increasingly similar to a search where the target and distractor 
features are known beforehand. As a result, search times decrease as 
observers perform repeated odd-one-out search with roughly constant 
distractor and target features. This is what happens during the learning 
trials of the FDL method (Fig. 2A). 

Once observers encode the repeated target and distractor features, 
role-reversal effects are induced when target and distractors features are 
swapped, resulting in increased search times (e.g., the features of the 
target and distractors in Fig. 2A are swapped in the search display in 
Fig. 2B). Increased search times on the test trials reflect the attentional 
suppression applied to the distractor orientations repeated during the 
learning trials (see Geng, Won, & Carlisle, 2019, for a review of how the 
visual system ignores distractors). Due to the role reversal, the target 
orientation on the test trial has the feature that the visual system has 
learned to ignore. A crucial point, however, is that this attentional 
suppression is not applied in a constant or arbitrary manner, but 
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Fig. 1. A. Example response pattern of motion sensitive neurons in area MT evoked by an image of a bar moving diagonally in the down-right direction. B. Two 
possible ways of representing this information are shown. At the top: Only a point estimate and a strength-of-evidence value, which corresponds to the height of the 
neural activity distribution, are extracted from the full distribution. At the bottom: The mean and the variance of the neural activity distribution are extracted. In both 
cases, the perceptual representation includes a point estimate and a variable that correlates with the uncertainty in the sensory evidence (Rahnev, 2017). 
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depends instead on the shape of the distractor distribution encoded 
during the learning trials. In Fig. 2, orientations around 60◦ will be 
suppressed the most since distractors on search trials preceding the role 
reversal were mostly oriented around 60◦. However, this suppression 
will decrease for other orientations, in proportion to the probability of 
being a distractor as encoded by the visual system. The search times in 
Fig. 2C reflect this, and hence, allow assessment of how observers 
encoded the orientation distribution of the distractors from the learning 
trials. 

To summarize the rationale behind FDL: Search times on test trials 
depend on the similarity between the target on the test trial and the 
distractors from the preceding learning trials as represented by the vi-
sual system. The structure of this representation is revealed by probing it 
at different locations in feature space, which is achieved by manipu-
lating the similarity between the current target and the previous dis-
tractors. In FDL, this similarity is quantified by the parameter “CT-PD”, 
which is defined as the distance (in feature space) between the feature 
value of the current target (“CT”) and the mean feature value of the 
previous distractor distribution (“PD”, see examples in Fig. 3, middle 
column). When search times from the test trials are plotted as a function 
of CT-PD distances (which will be referred as CT-PD curves from now 
on), this reveals observers’ representations of the distractor distribution 
from the learning trials. 

Chetverikov et al. (2016, 2017a); Chetverikov, Campana, and 
Kristjánsson (2017b, 2020) showed that observers’ search times as a 
function of the CT-PD distance follow the shape of the distractor feature 
distribution on the preceding learning trials. This even occurred when 
Gaussian and uniform distributions with the same mean and range were 
contrasted (Fig. 3). This demonstrates that observers build a model of 
the distractor features in terms of a probability distribution. Similar 
results have been observed with asymmetric skewed distributions 
(Chetverikov et al., 2016), with bi-modal distributions (Fig. 4B; Chet-
verikov et al., 2017b, 2020), with hue distributions of isoluminant 
colored items (Chetverikov et al., 2017a; Hansmann-Roth, Chetverikov, 
& Kristjánsson, 2019), and when the search array appeared in the pe-
ripheral visual field (Tanrıkulu, Chetverikov, & Kristjánsson, 2020; for a 

review, see Chetverikov, Hansmann-Roth, Tanrıkulu, & Kristjánsson, 
2019). 

4. How does the FDL method differ from methodologies of other 
experiments supporting probabilistic representations? 

The overarching problem with providing convincing empirical evi-
dence for probabilistic representations is that observers’ responses vary, 
but its source is difficult to identify. When faced with a perceptual de-
cision on colour, an observer might respond “red” 70% of the time. This 
observation does not directly demonstrate that the observer has a rep-
resentation assigning 0.7 probability to “red”. This response variation 
may also reflect artefacts from subjective guessing mentioned by Block 
(2018), from variability across experimental trials, or the process of 
sampling from the underlying distribution that the visual system per-
forms when making perceptual decisions (e.g., Vul, Hanus, & Kanw-
isher, 2009; Vul & Pashler, 2008). 

The crucial aspect of FDL is that the response feature differs from the 
visual feature being investigated. Therefore, FDL involves i) no query, ii) 
no perceptual decision about the distractor features that are learned, iii) 
no imposition of cognitive categories, iv) no sampling and v) no sub-
jective guessing about the relevant visual feature. When the experi-
menter investigates how observers encode the orientation of a set of 
lines, the task only requires observers to respond to the location of the 
target in the search array. When colour encoding is investigated, the 
observer only judges the location of the cut-off on a diamond-shaped 
item. The task does not include any perceptual decisions about the vi-
sual search feature, which is merely processed for visual analysis of the 
stimulus. This visual process might include a step in which the visual 
system has to “decide” that a certain line (or a diamond) is the target 
before responding to its location (or its cut-off). However, this step 
neither requires a response nor any explicit analysis of the target fea-
tures, because most of the time the target pops out among the dis-
tractors. Even when observers passively viewed the search displays 
during the learning trials (i.e., without making any response), response 
times on the test trials still demonstrated that observers were able to 
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Fig. 2. The FDL method consists of blocks of trials, where each block includes a series of learning trials and then a test trial. A. On learning trials observers perform a 
series of odd-one-out searches where distractor orientations are sampled from the same distribution. In this example, it is a Gaussian distribution centered at 60◦, 
shown with the blue curve at the bottom. B. On the test trial the features of the target and distractors are swapped and the target can now have the same features as 
the previous distractor distribution, shown with the dashed blue curve at the bottom. C. Hypothetical search times on test trials as a function of the target orientation 
from test trials. Search times following role-reversals depend on the similarity between the current target and the previous distractors as encoded by the visual 
system. Manipulating this similarity and observing its effects on search times reveals observers’ representations of previous distractors (the red curve). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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encode information about the distractor orientation distribution 
(Kristjánsson, Ceylan, & Pascucci, 2021). This indicates that even pas-
sive exposure to the search array makes the visual system automatically 
distinguish the target from the distractors. The crucial point here is that 
the probability distributions revealed by the FDL method are not 
imposed onto the task by the experimenter via probabilistic description 
of observer’s responses, because the method does not require a response 
concerning the visual feature whose distribution is being assessed. 
Instead, these probability distributions originate from the visual process 
necessary to perform the search. FDL therefore avoids the methodo-
logical criticisms of Block (2018) and Rahnev (2017) summarized in 
Section 2.1. 

Moreover, learning effects observed with FDL cannot be explained by 
low-level neural mechanisms (e.g., adaptation) that occur before the 
visual input reaches the primary visual cortex (Maljkovic & Nakayama, 
1994). These effects also cannot be attributed to post-perceptual or 

cognitive processes. FDL relies on role-reversal effects, which 
Kristjánsson and Driver (2008) describe as a form of “negative priming” 
(Tipper, 1985, 1992), where the internal representation of the to-be- 
ignored stimulus (i.e., distractors) is associated with suppression. This 
representation is considered to reflect a primitive memory system that 
operates at different levels of the visual processing hierarchy 
(Kristjánsson & Ásgeirsson, 2019; Kristjánsson & Nakayama, 2003; 
Nakayama, Maljkovic, & Kristjánsson, 2004). This system has strong 
parallels with the “perceptual representation system” (Magnussen & 
Greenlee, 1999; Tulving & Schacter, 1990) which is defined as a pre- 
semantic perceptual memory operating independently of other mem-
ory systems (for a review, see Kristjánsson, 2006; Kristjánsson & Cam-
pana, 2010). Such priming effects have been observed independently of 
observers’ expectancies, perceptual learning, anticipatory strategies 
(Becker, 2008; Kristjánsson & Driver, 2008; Maljkovic & Nakayama, 
1994, 1996; Shurygina, Kristjánsson, Tudge, & Chetverikov, 2019; 

Fig. 3. An example of how Chetverikov et al. (2016) created CT-PD (Current Target – Previous Distractor distance) curves. On the learning trials, the distractor 
orientations were drawn from either Gaussian or uniform distributions (Left column). CT-PD distance was manipulated across blocks of trials throughout the 
experiment (Middle column). The search times from the test trials were plotted as a function of CT-PD distances which correspond to observers’ representations of the 
distractor distributions. The physical distribution of the distractors is shown below the CT-PD curves. 

Fig. 4. A. An example search display for orientation. Observers search for the oddly oriented line and then indicate whether that line is located in the upper or lower 
half of the search display. In this example, the correct response would be “bottom”. B. An example search display for colour. Observers search for the oddly colored 
diamond and indicate the location of the cut-off on that diamond. In this example, the correct response is “left”. 
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Sigurdardottir, Kristjánsson, & Driver, 2008), or priming of responses 
(Goolsby & Suzuki, 2001; Sigurdardottir et al., 2008). The strength of 
inter-trial priming in visual search depends on the level of uncertainty in 
the task (Meeter & Olivers, 2006; Olivers & Meeter, 2006), suggesting 
that priming helps the visual system deal with uncertainty. All this 
means that investigations of role-reversal effects allow us to examine 
how information is encoded by a representation system that is primarily 
perceptual. 

In sum, the characteristics of FDL summarized in this section allow 
this method to meet the first criterion of providing evidence for proba-
bilistic representation. They ensure that the probability distribution 
revealed by this method is not imposed upon the task by the experi-
menter. Instead, it is generated as a result of the search process for the 
visual system itself, rather than being a probabilistic way of describing 
the output of the search process from the perspective of the experi-
menter. The method achieves this by making sure that the representa-
tions studied are primarily perceptual and are not contaminated by any 
post-perceptual judgments or categories. The next section describes how 
the FDL method meets the second criterion for probabilistic represen-
tations, which is to provide evidence for a structural correspondence 
between the probabilistic structure of the world states and the inner 
states. The section also describes evidence showing that the brain 
actually exploits such structural correspondences. 

5. How do FDL results differ from results of other experiments 
supporting probabilistic representations? 

5.1. Summary of key results obtained with FDL 

In Chetverikov et al. (2016), the distractor distribution used on 
learning trials was either Gaussian or uniform (Fig. 3). They found 
remarkable correspondence between the shape of the underlying rep-
resentation of the distractor distribution (i.e., CT-PD curves) and the 
shape of the physical distractor distribution used as the stimulus. This 
correspondence is especially important given that the two different 
distractor distributions had the same mean and range, which are sum-
mary statistical variables crucial for outlier detection within sets of vi-
sual items (Hochstein, Pavlovskaya, Bonneh, & Soroker, 2018). 
Therefore, the difference observed in the CT-PD curves (Fig. 3) cannot be 
attributed to summary statistical representations. Notably, the results 
were replicated when Gaussian and uniform distribution were equated 
on variance rather than range or when the target feature is kept constant 
or varied randomly (within a certain range) during the learning trials 
(Chetverikov et al., 2016, Experiments 3A-3C). This demonstrates that 
encoding of the target features alone cannot account for the corre-
spondence between the CT-PD curves and the physical distractor 
distribution. 

These results cannot be explained by representational schemes that 
rely on summary statistics (e.g., representing only the mean and vari-
ance). Instead, they can only be accounted for by a representation that 
includes information about the full probability distribution of the dis-
tractors.2 For example, the search times obtained on the test trials when 
the orientations of the previous distractors were distributed uniformly 
were fairly similar inside the range of the uniform distribution (Fig. 3, 
rightmost column, the part of the red line corresponding to orientations 
smaller than 30◦). If the visual system specifically represents the mean of 
this distribution rather than the distribution itself, the search times 
should have decreased as the CT-PD distance increased (which is what 
happens when the previous distractor distribution was Gaussian). 
However, the fact that the search times are constant in the range of the 
uniform distribution indicates that the distribution (rather than just its 
mean) is represented. 

In a later study, Chetverikov et al. (2017b) used a bimodal distractor 
distribution composed of two separate uniform segments on learning 
trials. Following two learning trials, CT-PD curves revealed a unimodal 
representation of the distribution with a peak between the two modes. 
However, following more learning trials, the shape of the CT-PD curves 
took the form of the bimodal distribution. This is strong evidence that 
observers initially assumed a unimodal distribution but updated their 
representation to a bimodal distribution as more sensory evidence 
accumulated. Moreover, Chetverikov et al. (2020) presented two targets 
simultaneously within a single search trial, where distractor orientations 
were drawn from a bimodal distribution (Fig. 5A). Search times for 
targets between the peaks of the bimodal distribution were lower than if 
the target appeared on one of the peaks. They also ran simulations with 
three different models (the three models in Fig. 5B) to distinguish be-
tween a probabilistic representation and two other possible summary 
statistical representation models. The probabilistic model predicted 
observers’ search times (and the order in which the targets were re-
ported) better than the other two, which indicates that observers’ rep-
resentations approximated the physical distribution. Even though the 
gap between the two peaks was partly filled, the bimodality of the dis-
tribution was still visible in the search times. As also suggested by 
Rahnev (2017), using bimodally distributed sensory evidence provides 
clearer evidence for distinguishing between full-distribution and sum-
mary statistical schemes. 

5.2. What kind of empirical evidence is needed for probabilistic 
representations? 

The strongest empirical evidence for probabilistic perceptual repre-
sentations would involve demonstrating that the visual system actually 
uses the probabilistic information about sensory uncertainty to guide 
behavior. While some have attempted to show this (for a review see Ma 
& Jazayeri, 2014) it is still unclear whether this evidence for repre-
senting sensory uncertainty is linked to perceptual or post-perceptual 
processes (Gross, 2018), which is very difficult to distinguish empiri-
cally as mentioned before. Positive evidence for links to perceptual 
processes comes from an fMRI study by Van Bergen, Ma, Pratte, and 
Jehee (2015); also see Walker, Cotton, Ma, and Tolias (2019). Observers 
were shown an oriented grating and then asked to report the orientation 
by rotating a bar. Similar to previous studies, observers’ orientation 
judgments were biased away from cardinal axes. This bias increased 
when there was high sensory uncertainty indicating that observers used 
that uncertainty in their perceptual decisions. However, the novel part 
of their study was that the uncertainty was not induced by any external 
sources (such as adding noise to the visual stimulus), but was decoded 
from the visual cortex with fMRI. Therefore, even when the physical 
features of the visual stimulus were kept constant, the degree of bias in 
observers’ judgments was highly correlated with uncertainty in the vi-
sual cortex. However, Block (2018) argued that what may look like a 
representation of uncertainty in that study could instead reflect mere 
sensitivity to sensory uncertainty (or in Block’s terms: sensitivity to the 
degree of competition between non-probabilistic representations). Gross 
(2020) refers to this criticism by Block as the “mere sensitivity chal-
lenge”, which boils down to the question of whether sensitivity to sen-
sory uncertainty qualifies as a probabilistic representation of that 
uncertainty. 

Some proponents of probabilistic theories have also raised similar 
concerns. For example, Knill and Pouget (2004) acknowledge that 
empirical results in the literature can also be accounted for by a co- 
variation relationship between internal structures in the visual system 
and uncertainty in the visual stimulus, rather than reflecting probabi-
listic representations of that uncertainty. Chater et al. (2006) agree that 
a set of heuristic tricks implemented by the visual system can account for 
empirical results suggesting computations of probabilistic representa-
tions. However, contrary to Block, both Knill and Pouget (2004) and 
Chater et al. (2006) predict that a system whose operation depends on 

2 At a minimum, only a representation including information beyond and 
above distribution summary statistics can account for these results. 
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such heuristics cannot explain the high-level flexibility and generality of 
human perception and cognition. 

Gross (2020) states that Block’s conception of mere sensitivity is well 
captured with Shea’s notion of representations that is based on the 
exploitation of correlational information carried by a range of states 
(Shea, 2018, p.78). An example of this notion would be the correlation 
between the honeybee nectar dance and the location of a nectar source, 
where the angle of the performed dance and the number of waggles in it 
provide information about the direction and the distance of the nectar 
source from the hive. Bees are not only sensitive to the correlation be-
tween the features of the dance and the range of different directions and 
distances for the food source, but they can exploit this correlation to 
guide their behavior and forage successfully. Similarly, the visual sys-
tem’s exploitation of the correlation between its inner states and sensory 
uncertainty caused by a distal stimulus (as shown by Van Bergen et al., 
2015) involves more than mere sensitivity, so it qualifies as a repre-
sentation of that uncertainty (see also Shea, 2020). 

However, even though such a correlational notion of representation 
could overcome the mere sensitivity challenge, it would be in line with 
Rahnev’s (2017) alternative summary representational schemes 
(Fig. 1B). This correlational representation of sensory uncertainty in-
cludes a single estimate of the distal visual feature coupled with a 
parameter indicating its level of uncertainty. However, as Rahnev 
(2017) rightly states, assumptions in current probabilistic accounts of 
perception do not involve such summary representational schemes, but 
instead they involve perceptual representations that include probability 
distributions of possible estimates of the visual feature. The latter, but 
not the former, reflects the type of representation schemes both Rahnev 
(2017) and Block (2018) criticize. Therefore, a correlational notion of 
representation cannot avoid Block’s and Rahnev’s criticism of proba-
bilistic representations. This correlational notion of representation 
parallels the account based on co-variation relations that Knill and 
Pouget (2004) — or the heuristic account that Chater et al. (2006) — 
contrasted with truly probabilistic representations assumed in the 
empirical literature. Therefore, even if empirical results indicating an 
exploited correlation between sensory uncertainty and internal states of 
the visual system (such as those obtained by Van Bergen et al., 2015; or 
by Walker et al., 2019) can be considered representations of sensory 
uncertainty, they still cannot be considered empirical evidence for 
probabilistic representations of sensory uncertainty as posited in prob-
abilistic Bayesian accounts of perception, because the criticisms of Block 
and Rahnev would still hold. 

Rather than a notion of representation based on exploited correla-
tional information, a representational scheme based on an exploited 

structural correspondence between internal states of the brain and the 
external states of the world would provide empirical evidence for 
probabilistic representations. The structural correspondence in these 
types of representations emerges when “a collection of representations 
in which a relation on representational vehicles represents a relation on 
the entities they represent.” (Shea, 2018, p.118). A simple example of 
this structural notion of representation would be a topographical map of 
a landscape. The reason a hiker can use such a map as a representation of 
the actual landscape is the structural correspondence between the map 
and the landscape. Exploitation of this correspondence (i.e., considering 
the map as a representation) would be crucial for explaining the hiker’s 
behavior (see also Ramsey, 2007, p.77–80). 

Representations with structural correspondence better capture the 
notion of probabilistic representation posited in probabilistic Bayesian 
accounts of perception. In probabilistic representations, not only is the 
correlational information about the probability of an estimate of a distal 
visual feature being exploited, but the relations between different 
correlational representations are also exploited. To clarify this distinc-
tion, let’s first consider again the correlational relation between the 
honeybee nectar dance and the location of the nectar source with respect 
to the location of the beehive. This relation does indeed include a 
structural relation since the difference between the number of waggles 
in two different dances corresponds to the distance difference between 
the two nectar sources. However, as Shea (2014, 2018) states, this 
structural relation is not exploited because the relation between the 
dances is not used in guiding the behavior of the bees. For example, the 
fact that the 6-waggle dance is three waggles more than the 3-waggle 
dance is not used by the bee for nectar foraging. Therefore, the honey-
bee nectar dance case does not qualify as an exploited structural repre-
sentation. Contrary to this, probabilistic representations in terms of 
probability distributions include information about the relations be-
tween represented probabilities of possible estimates of a visual feature. 
For example, a probability distribution over different orientations would 
provide information about the relation between the probabilities 
assigned to different orientation estimates. 

An account of probabilistic representations requiring structural 
correspondence is also consistent with Rahnev’s (2017) view that the 
alternative representational schemes that he proposed (Fig. 1B) are not 
genuine probabilistic representations, but instead they provide corre-
lational information about a single estimate. These alternative repre-
sentational schemes can of course carry information about a range of 
different orientations, or there can be multiple representations each of 
which is correlated with a different orientation. However, these repre-
sentational schemes do not include information about the probabilistic 

Fig. 5. A. Example learning and test trials used in Chetverikov et al. (2020). The plots at the bottom show the features of targets and distractors used in this example 
trial. The solid lines show the distractor distribution used on the current trial, while the dashed lines show the distractor distribution on the previous trial. B. The left 
column shows the physical distribution of distractor orientations. The right column shows possible different schemes for how this information might be represented. 
Top row: Only one of the modes of the bimodal distribution is chosen and represented. Middle row: The distribution can be represented with summary statistics (mean 
and variance). Bottom row: Both modes of the distribution are represented, which approximately equals the full distribution (see Chetverikov et al., 2020 for 
more details). 
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relations between different orientations, as probability distributions do. 
Hence, they do not qualify as an exploited structural representation. 
However, the probabilistic representations that consist of probability 
distributions over feature values, should be considered structural rep-
resentations because the relations between probabilities for different 
feature values are assumed to be computed and used in guiding the 
behavior. This is the type of probabilistic representation posited in the 
perception literature, and both Rahnev (2017) and Block (2018) rightly 
claim that there is no empirical evidence for such probabilistic 
representations. 

Given this, Rahnev’s (2017) and Block’s (2018) perspectives can be 
recast as conveying that there is no empirical evidence for probabilistic 
representation as assumed in the perceptual science literature, because 
the current empirical evidence is more in line with a notion of repre-
sentation that carries correlational information, as opposed to relying on 
structural correspondence. This is the crucial difference between the 
experimental results Block and Rahnev discuss and the results obtained 
with the FDL method, which demonstrate an example of a structural 
correspondence between the inner states of the visual system (inferred 
from CT-PD curves) and the underlying probability distribution of the 
stimulus in the physical world. The difference in the amount of sup-
pression applied to any two distractor orientations (or colors) corre-
sponds to the difference between the probabilities that they are 
distractors. 

5.3. How does FDL provide such empirical evidence? 

To qualify as a structural representation, the structural relation be-
tween the probabilities tied to different orientations should also be 
exploited by downstream processes of the visual system. Shea (2018, 
2020) proposes that if the degree of match (or mis-match) between the 
represented and the actual probabilistic structure explains the success 
(or failure) of behavior, this would indicate that the probabilities are 
included in the representational content, as opposed to being a part of 
the mode or the manner that non-probabilistic information is repre-
sented in, as discussed by Gross (2020). The results from Chetverikov 
et al. (2020) provide an example of how the probabilistic structure 

demonstrated by the FDL method is exploited by the visual system, and 
also show how the degree of mismatch between the CT-PD curves and 
the physical distribution of orientations in the stimulus explains ob-
servers’ behavior. 

Chetverikov et al. (2020) included two targets on their odd-one-out 
search trials (Fig. 5A). Observers were instructed to respond as soon as 
they found a target. Apart from observers’ search times, they also looked 
at which of the two targets was more likely to be found first on test trials 
as a function of their orientation with respect to the distractor distri-
bution on the preceding learning trials (Fig. 6). Targets whose orienta-
tion fell between the two modes of the previous distractor distribution 
were more likely to be found first when the other target was on one of 
the modes of that distribution. Such a result was expected, since the 
orientation of “Target B" depicted in Fig. 6 (middle row) would be 
suppressed more than the orientation of “Target A", given that the 
orientation of “Target B" is selected from inside one of the modes of the 
previous distractor distribution. An interesting condition appears when 
this comparison is done between a target orientation outside of the range 
of the bimodal distribution (Target C in Fig. 6) and a target in between 
the two modes of the previous distractor distribution (Target A in Fig. 6). 
The suppression of both these target orientations should be equal, 
because their probability of being a distractor is zero given the physical 
distractor distribution on the learning trials. However, Chetverikov et al. 
(2020) found that in this condition the target outside of the range of the 
previous bimodal distractor distribution (Target C) was more likely to be 
found first than the one in between the modes of that bimodal distri-
bution (Target A). This observation can only be explained by the 
mismatch between how the observers represented the bimodal dis-
tractor distribution and the physical bimodal distractor distribution 
used in the experiment. Search times from the test trials revealed that 
the visual system approximates the distractor distribution with a prob-
abilistic bimodal representation similar to the one shown in Fig. 5B 
(bottom of rightmost column). In other words, the gap between the two 
modes of the distribution was partly filled in by the representation of 
that bimodality, which explains why “Target C" was more likely to be 
found first than “Target A". The probability of being a distractor was 
higher for “Target C" than “Target A" given the representation of the 

Fig. 6. An example of the target and distractor orientations used on the learning and test trials of Chetverikov et al. (2020). The red dashed lines in the “Test Trials” 
column show the distractor distribution used on the learning trials. The rightmost column shows which of the two targets was more likely to be picked by the 
observer given its orientation in relation to the distractor distribution on the learning trials. The exact locations of the targets in orientation space shown for the test 
trials are only shown as demonstrations. There are three types of targets categorized with respect to their location in orientation space. Target A is for target ori-
entations that fall in between the two modes of the preceding distractor distribution. Target B corresponds to target orientations that fall inside one of the two modes 
of the preceding distractor distribution. Target C corresponds to target orientations that fall outside of the range of the preceding bimodal distractor distribution. See 
text for more details. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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distractor distribution, but not according to the actual physical dis-
tractor distribution. In other words, the order of the two targets found by 
the observers followed the relational structure of this internal repre-
sentation, which clearly stands as a proxy for the physical distribution. 

To summarize, we argue that existing evidence for probabilistic 
representations demonstrates that the visual system can exploit corre-
lations between its inner states and the sensory uncertainty caused by 
the distal stimulus. However, such results only reveal sensitivity to 
sensory uncertainty, which is not enough to posit probabilistic repre-
sentations as assumed in the perception literature (Block, 2018). Simi-
larly, Rahnev’s (2017) view is in line with the idea that representations 
based on exploited correlational information can account for the current 
empirical evidence presented in favour of probabilistic representations. 
Given these criticisms, we argue that empirical evidence demonstrating 
an exploited structural correspondence between the inner perceptual 
states and external stimulus conditions can be used as evidence for 
probabilistic representations. Such a notion of probabilistic represen-
tation fits better with the one assumed in current probabilistic accounts 
of perception. Importantly, FDL results not only provide evidence that is 
based on probabilistic structural correspondence, but also demonstrate 
how the degree of mismatch between the represented and the actual 
probabilistic structure of the feature distributions can explain observers’ 
behavior. 

5.4. Representing groups versus individual items 

Both humans and animals seem to have an ability to perceive the 
underlying probabilities of statistical regularities in their environment 
(Gallistel, Krishan, Liu, Miller, & Latham, 2014). However, the main 
argument here concerns probabilistic representations, not representa-
tions of probabilities. 

The CT-PD curves from FDL experiments reveal the representations 
of orientations (or colors) of a group of items. The represented entity in 
the FDL task could be described as an ensemble of visual items. In fact, 
FDL studies often refer to ensemble perception, which is the ability to 
represent multiple items as an ensemble instead of representing each 
individual item separately (for a review see Alvarez, 2011; Whitney & 
Yamanashi Leib, 2018). Therefore, it might look like there is a funda-
mental difference between processes used in FDL tasks, and simply 
representing the orientation or colour of a single item. However, this 
difference does not change or undermine the main conclusions inferred 
from FDL studies. Firstly, the fact that the search display in FDL studies 
includes multiple items is a trivial property of the task. For example, the 
space between the diamonds used in the search array of (Chetverikov 
et al., 2017a; see Fig. 4B) can be eliminated by positioning each colored 
item adjacent to each other, resulting in a single object that varies in 
colour. The same FDL task can be performed on this object by asking 
observers to locate whether the odd-colored patch is in the upper or 
lower half of this surface. Individuation of visual objects depends 
heavily on how the visual scene is interpreted, rather than being a direct 
reflection of how the external world is physically structured (Feldman, 
2003). This interpretation depends mainly on how scene features are 
perceptually grouped by the visual system. Secondly, FDL tasks do not 
require observers to encode the underlying distribution of the distractor 
orientations. Not only that, even at a computational level, encoding the 
full distribution of the distractor orientation is not required for per-
forming the search task. For example, encoding only a few summary 
statistical properties of the distractors (e.g. their range) would, in 
principle, be enough to detect the outlier in the search task. Therefore, if 
there are traces of ensemble processing or perceptual grouping in FDL 
studies, this should be attributed to how vision works, rather than to 
specifics of FDL. 

The FDL method also includes temporal integration of visual infor-
mation across learning trials (Chetverikov et al., 2017b). Therefore, 
results obtained by this method do not directly show that orientation of a 
single item on an individual trial is encoded probabilistically. Yeon and 

Rahnev (2020) argued that even though perceptual priors constructed 
over time could be considered as probabilistic, this does not indicate that 
the sensory representation of a single stimulus on a single trial is 
encoded probabilistically. The account presented here does not neces-
sitate probabilistic representation of a single stimulus on a single trial, 
but it claims that probabilistic representations are best defined as 
structural representations in which relations between different correla-
tional representations are exploited. These individual building blocks (e. 
g., correlational sensory representations) of perceptual representations 
are not what makes them structural (probabilistic) representations, but 
the fact that the relations between such individual building blocks are 
being exploited makes them structural and probabilistic. 

Our visual system evolved to operate in complex environments. Vi-
sual items are never present in isolation in the real world. But instead 
they are always embedded within a spatial and temporal context. Rep-
resentation of a visual feature of a single item on a single trial would still 
incorporate relational information with respect to its spatial (Utochkin 
& Brady, 2020) and temporal (Bae & Luck, 2017; Fischer & Whitney, 
2014) surroundings. Therefore, we argue that an account of probabi-
listic representation based on structural correspondence that in-
corporates relational information would better serve empirical theories 
of perception. 

6. Conclusions 

Probabilistic approaches to perception and cognition have had great 
success, especially in building computational models of perceptual 
processes. This has led researchers to propose that the brain represents 
information probabilistically. Highly influential studies strongly suggest 
that probabilistic representations are used in visual perception. How-
ever, the methodology of such studies prevents them from providing 
clear evidence in favour of probabilistic representations (Block, 2018). 
Moreover, the results of these studies are more in line with summary 
statistical representations than representations in terms of probability 
distributions (Rahnev, 2017; Yeon & Rahnev, 2020). We have presented 
an experimental methodology that provides evidence for probabilistic 
representations in perception using a method that acknowledges these 
criticisms but crucially, also avoids them. Firstly, FDL is an ideal tool for 
examining perceptual representations because it does not require 
explicit judgments of the relevant visual feature being investigated. 
Secondly, and more importantly, the results obtained with FDL 
demonstrate an exploited structural correspondence between the inter-
nal states of the visual system and the probabilistic structure of the distal 
visual stimulus. 

We argued that empirical evidence for probabilistic representations 
should demonstrate an exploited structural correspondence between the 
inner states of the brain and the external stimulus conditions. The notion 
of probabilistic representation posited by probabilistic Bayesian ac-
counts calls for representations that depend on a structural correspon-
dence. Moreover, representations based on structural correspondence 
could serve better for building theories with explanatory value in 
cognitive psychology (Gallistel, 1990; Gallistel, 2020; Ramsey, 2007). 

Even though the methods and results in FDL paradigm potentially 
provide a prime example of what kind of empirical evidence is needed 
for probabilistic representations posited in probabilistic Bayesian ac-
counts of perception, there are nevertheless open questions. For 
example, probabilistic representations are defined at Marr’s (1982) 
computational level, and might not be needed at algorithmic or repre-
sentational levels of explanation (Block, 2018). A common view within 
Bayesian approaches is that the processes at the algorithmic level 
approximate the Bayesian processes described at the computational 
level (Griffiths, Vul, & Sanborn, 2012). Block (2018) rephrases this 
statement by claiming that the visual system behaves as if it implements 
Bayesian inference. However, there is no consensus on whether there is a 
fundamental difference between these two (approximation vs. as if) 
claims (Rescorla, 2015). On the other hand, Sanborn and Chater (2016) 
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argue that the brain does not represent probabilities, but instead func-
tions as a Bayesian sampler (see also Griffiths et al., 2012). However, 
Icard (2016) argues that the sampling propensities are probabilities and 
are meaningfully represented by the brain. Investigating how probabi-
listic representations are defined at different levels of description can 
significantly contribute to the discussions raised in this paper. 

The visual processes that are measured with FDL potentially build a 
better connection between studies in perceptual sciences and what 
actually happens during perception in real life. Perceptual grouping and 
ensemble perception are fundamental parts of visual processing. 
Attempting to isolate visual perception from such processes will prevent 
researchers from studying – in Block’s (2018) terms – “genuine 
perception”, rather than enabling such investigations. We also 
acknowledge the limitations of FDL. Firstly, FDL results have so far only 
provided evidence for probabilistic representations in low-level visual 
features on continuous scales (e.g. orientation, colour). How these 
findings will apply to higher-level visual representations or visual tasks 
that require representations of discrete quantities is still unknown. We 
believe, however, that much of our perceptual experience depends on 
the representation of these continuous feature spaces, such as colour, 
illumination, orientation, distance, etc. Secondly, the actual mechanism 
behind the role-reversal effects that FDL methods rely on is still not fully 
known. However, as we have argued, many studies on such priming 
effects strongly indicate that these effects emerge from manipulation of 
early perceptual representations. Further research is needed to assess the 
scope of the conclusions that can be drawn from FDL results. However, 
rather than being limitations, we consider all these questions as useful 
for making the problems about probabilistic perception more explicit 
and apparent. This would encourage constructive discussions for guid-
ing future research to get to the crux of issues regarding probabilistic 
perception. 

The notion of probabilistic representations has been a central theo-
retical concept within probabilistic accounts of perception. Regardless 
of its importance, such a notion still requires a bridge between its 
theoretical merits and empirical underpinnings. This is why we believe 
that the criticisms summarized here against the empirical evidence for 
probabilistic representations have to be acknowledged. But we have also 
presented an experimental method that sidesteps such criticisms, and 
provides an intriguing example of what kind of empirical evidence is 
needed for probabilistic representations in perception. 
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